新闻| 文章| 资讯| 行情| 企业| wap手机版| article文章| 首页|会员中心|保存桌面|手机浏览
普通会员

佛山市南海隆诚塑料五金厂(普通合伙)

佛山市南海隆诚塑料五金厂(普通合伙),塑料加工,家用塑料制品,其他塑料制品,首饰...

企业列表
新闻列表
  • 暂无新闻
推荐企业新闻
联系方式
  • 联系人:蒋俊平
  • 电话:86 0757 15916589898
首页 > 新闻中心 > 002: 说说 TCP 三次握手的过程?为什么是三次而不是两次、四次?
新闻中心
002: 说说 TCP 三次握手的过程?为什么是三次而不是两次、四次?
发布时间:2024-11-16        浏览次数:0        返回列表

002: 说说 TCP 三次握手的过程?为什么是三次而不是两次、四次?

TCP 作为传输层的协议,是一个IT工程师素养的体现,也是面试中经常被问到的知识点。在此,我将 TCP 核心的一些问题梳理了一下,希望能帮到各位。

首先概括一下基本的区别:

TCP是一个面向连接的、可靠的、基于字节流的传输层协议。

UDP是一个面向无连接的传输层协议。(就这么简单,其它TCP的特性也就没有了)。

具体来分析,和 UDP 相比,TCP 有三大核心特性:

TCP 会精准记录哪些数据发送了,哪些数据被对方接收了,哪些没有被接收到,而且保证数据包按序到达,不允许半点差错。这是有状态

当意识到丢包了或者网络环境不佳,TCP 会根据具体情况调整自己的行为,控制自己的发送速度或者重发。这是可控制

相应的,UDP 就是无状态, 不可控的。

以谈恋爱为例,两个人能够在一起最重要的事情是首先确认各自被爱的能力。接下来我们以此来模拟三次握手的过程。

第一次:

男: 我爱你。

女方收到。

由此证明男方拥有爱的能力。

第二次:

女: 我收到了你的爱,我也爱你。

男方收到。

OK,现在的情况说明,女方拥有爱和被爱的能力。

第三次:

男: 我收到了你的爱。

女方收到。

现在能够保证男方具备被爱的能力。

由此完整地确认了双方爱和被爱的能力,两人开始一段甜蜜的爱情。

当然刚刚那段属于扯淡,不代表本人价值观,目的是让大家理解整个握手过程的意义,因为两个过程非常相似。对应到 TCP 的三次握手,也是需要确认双方的两样能力: 发送的能力和接收的能力。于是便会有下面的三次握手的过程:

从最开始双方都处于CLOSED状态。然后服务端开始监听某个端口,进入了LISTEN状态。

然后客户端主动发起连接,发送 SYN , 自己变成了SYN-SENT状态。

服务端接收到,返回SYN和ACK(对应客户端发来的SYN),自己变成了SYN-REVD。

之后客户端再发送ACK给服务端,自己变成了ESTABLISHED状态;服务端收到ACK之后,也变成了ESTABLISHED状态。

另外需要提醒你注意的是,从图中可以看出,SYN 是需要消耗一个序列号的,下次发送对应的 ACK 序列号要加1,为什么呢?只需要记住一个规则:

凡是需要对端确认的,一定消耗TCP报文的序列号。

SYN 需要对端的确认, 而 ACK 并不需要,因此 SYN 消耗一个序列号而 ACK 不需要。

根本原因: 无法确认客户端的接收能力。

分析如下:

如果是两次,你现在发了 SYN 报文想握手,但是这个包滞留在了当前的网络中迟迟没有到达,TCP 以为这是丢了包,于是重传,两次握手建立好了连接。

看似没有问题,但是连接关闭后,如果这个滞留在网路中的包到达了服务端呢?这时候由于是两次握手,服务端只要接收到然后发送相应的数据包,就默认建立连接,但是现在客户端已经断开了。

看到问题的吧,这就带来了连接资源的浪费。

三次握手的目的是确认双方发送和接收的能力,那四次握手可以嘛?

当然可以,100 次都可以。但为了解决问题,三次就足够了,再多用处就不大了。

第三次握手的时候,可以携带。前两次握手不能携带数据。

如果前两次握手能够携带数据,那么一旦有人想攻击服务器,那么他只需要在第一次握手中的 SYN 报文中放大量数据,那么服务器势必会消耗更多的时间内存空间去处理这些数据,增大了服务器被攻击的风险。

第三次握手的时候,客户端已经处于ESTABLISHED状态,并且已经能够确认服务器的接收、发送能力正常,这个时候相对安全了,可以携带数据。

如果双方同时发 SYN报文,状态变化会是怎样的呢?

这是一个可能会发生的情况。

状态变迁如下:

在发送方给接收方发SYN报文的同时,接收方也给发送方发SYN报文,两个人刚上了!

发完SYN,两者的状态都变为SYN-SENT。

在各自收到对方的SYN后,两者状态都变为SYN-REVD。

接着会回复对应的ACK + SYN,这个报文在对方接收之后,两者状态一起变为ESTABLISHED。

这就是同时打开情况下的状态变迁。

刚开始双方处于ESTABLISHED状态。

客户端要断开了,向服务器发送 FIN 报文,在 TCP 报文中的位置如下图:

发送后客户端变成了FIN-WAIT-1状态。注意, 这时候客户端同时也变成了half-close(半关闭)状态,即无法向服务端发送报文,只能接收。

服务端接收后向客户端确认,变成了CLOSED-WAIT状态。

客户端接收到了服务端的确认,变成了FIN-WAIT2状态。

随后,服务端向客户端发送FIN,自己进入LAST-ACK状态,

客户端收到服务端发来的FIN后,自己变成了TIME-WAIT状态,然后发送 ACK 给服务端。

注意了,这个时候,客户端需要等待足够长的时间,具体来说,是 2 个 MSL(Maximum Segment Lifetime,报文最大生存时间), 在这段时间内如果客户端没有收到服务端的重发请求,那么表示 ACK 成功到达,挥手结束,否则客户端重发 ACK。

如果不等待会怎样?

如果不等待,客户端直接跑路,当服务端还有很多数据包要给客户端发,且还在路上的时候,若客户端的端口此时刚好被新的应用占用,那么就接收到了无用数据包,造成数据包混乱。所以,最保险的做法是等服务器发来的数据包都死翘翘再启动新的应用。

那,照这样说一个 MSL 不就不够了吗,为什么要等待 2 MSL?

这就是等待 2MSL 的意义。

因为服务端在接收到FIN, 往往不会立即返回FIN, 必须等到服务端所有的报文都发送完毕了,才能发FIN。因此先发一个ACK表示已经收到客户端的FIN,延迟一段时间才发FIN。这就造成了四次挥手。

如果是三次挥手会有什么问题?

等于说服务端将ACK和FIN的发送合并为一次挥手,这个时候长时间的延迟可能会导致客户端误以为FIN没有到达客户端,从而让客户端不断的重发FIN。

如果客户端和服务端同时发送 FIN ,状态会如何变化?如图所示:

三次握手前,服务端的状态从CLOSED变为LISTEN, 同时在内部创建了两个队列:半连接队列全连接队列,即SYN队列ACCEPT队列

当客户端发送SYN到服务端,服务端收到以后回复ACK和SYN,状态由LISTEN变为SYN_RCVD,此时这个连接就被推入了SYN队列,也就是半连接队列

当客户端返回ACK, 服务端接收后,三次握手完成。这个时候连接等待被具体的应用取走,在被取走之前,它会被推入另外一个 TCP 维护的队列,也就是全连接队列(Accept Queue)

SYN Flood 属于典型的 DoS/DDoS 攻击。其攻击的原理很简单,就是用客户端在短时间内伪造大量不存在的 IP 地址,并向服务端疯狂发送SYN。对于服务端而言,会产生两个危险的后果:

报文头部结构如下(单位为字节):

请大家牢记这张图!

如何标识唯一标识一个连接?答案是 TCP 连接的四元组——源 IP、源端口、目标 IP 和目标端口。

那 TCP 报文怎么没有源 IP 和目标 IP 呢?这是因为在 IP 层就已经处理了 IP 。TCP 只需要记录两者的端口即可。

即Sequence number, 指的是本报文段第一个字节的序列号。

从图中可以看出,序列号是一个长为 4 个字节,也就是 32 位的无符号整数,表示范围为 0 ~ 2^32 - 1。如果到达最大值了后就循环到0。

序列号在 TCP 通信的过程中有两个作用:

即Initial Sequence Number(初始序列号),在三次握手的过程当中,双方会用过SYN报文来交换彼此的 ISN。

ISN 并不是一个固定的值,而是每 4 ms 加一,溢出则回到 0,这个算法使得猜测 ISN 变得很困难。那为什么要这么做?

如果 ISN 被攻击者预测到,要知道源 IP 和源端口号都是很容易伪造的,当攻击者猜测 ISN 之后,直接伪造一个 RST 后,就可以强制连接关闭的,这是非常危险的。

而动态增长的 ISN 大大提高了猜测 ISN 的难度。

即ACK(Acknowledgment number)。用来告知对方下一个期望接收的序列号,小于ACK的所有字节已经全部收到。

常见的标记位有SYN,ACK,FIN,RST,PSH。

SYN 和 ACK 已经在上文说过,后三个解释如下: FIN:即 Finish,表示发送方准备断开连接。

RST:即 Reset,用来强制断开连接。

PSH:即 Push, 告知对方这些数据包收到后应该马上交给上层的应用,不能缓存。

占用两个字节,也就是 16 位,但实际上是不够用的。因此 TCP 引入了窗口缩放的选项,作为窗口缩放的比例因子,这个比例因子的范围在 0 ~ 14,比例因子可以将窗口的值扩大为原来的 2 ^ n 次方。

占用两个字节,防止传输过程中数据包有损坏,如果遇到校验和有差错的报文,TCP 直接丢弃之,等待重传。

可选项的格式如下:

常用的可选项有以下几个:

第一节讲了 TCP 三次握手,可能有人会说,每次都三次握手好麻烦呀!能不能优化一点?

可以啊。今天来说说这个优化后的 TCP 握手流程,也就是 TCP 快速打开(TCP Fast Open, 即TFO)的原理。

优化的过程是这样的,还记得我们说 SYN Flood 攻击时提到的 SYN cookie 吗?这个 cookie 可不是浏览器的cookie, 用它同样可以实现 TFO。

首先客户端发送SYN给服务端,服务端接收到。

注意哦!现在服务端不是立刻回复 SYN + ACK,而是通过计算得到一个SYN cookie, 将这个cookie放到 TCP 报文的 Fast Open选项中,然后才给客户端返回。

客户端拿到这个 cookie 的值缓存下来。后面正常完成三次握手。

首轮三次握手就是这样的流程。而后面的三次握手就不一样啦!

在后面的三次握手中,客户端会将之前缓存的 cookie、SYN 和HTTP请求(是的,你没看错)发送给服务端,服务端验证了 cookie 的合法性,如果不合法直接丢弃;如果是合法的,那么就正常返回SYN + ACK。

重点来了,现在服务端能向客户端发 HTTP 响应了!这是最显著的改变,三次握手还没建立,仅仅验证了 cookie 的合法性,就可以返回 HTTP 响应了。

当然,客户端的ACK还得正常传过来,不然怎么叫三次握手嘛。

流程如下:

注意: 客户端最后握手的 ACK 不一定要等到服务端的 HTTP 响应到达才发送,两个过程没有任何关系。

TFO 的优势并不在与首轮三次握手,而在于后面的握手,在拿到客户端的 cookie 并验证通过以后,可以直接返回 HTTP 响应,充分利用了1 个RTT(Round-Trip Time,往返时延)的时间提前进行数据传输,积累起来还是一个比较大的优势。

timestamp是 TCP 报文首部的一个可选项,一共占 10 个字节,格式如下:

kind(1 字节) + length(1 字节) + info(8 个字节)

其中 kind = 8, length = 10, info 有两部分构成: timestamptimestamp echo,各占 4 个字节。

那么这些字段都是干嘛的呢?它们用来解决那些问题?

接下来我们就来一一梳理,TCP 的时间戳主要解决两大问题:

在没有时间戳的时候,计算 RTT 会遇到的问题如下图所示:

如果以第一次发包为开始时间的话,就会出现左图的问题,RTT 明显偏大,开始时间应该采用第二次的;

如果以第二次发包为开始时间的话,就会导致右图的问题,RTT 明显偏小,开始时间应该采用第一次发包的。

实际上无论开始时间以第一次发包还是第二次发包为准,都是不准确的。

那这个时候引入时间戳就很好的解决了这个问题。

比如现在 a 向 b 发送一个报文 s1,b 向 a 回复一个含 ACK 的报文 s2 那么:

现在我们来模拟一下这个问题。

序列号的范围其实是在0 ~ 2 ^ 32 - 1, 为了方便演示,我们缩小一下这个区间,假设范围是 0 ~ 4,那么到达 4 的时候会回到 0。

那么用 timestamp 就能很好地解决这个问题,因为每次发包的时候都是将发包机器当时的内核时间记录在报文中,那么两次发包序列号即使相同,时间戳也不可能相同,这样就能够区分开两个数据包了。

TCP 具有超时重传机制,即间隔一段时间没有等到数据包的回复时,重传这个数据包。

那么这个重传间隔是如何来计算的呢?

今天我们就来讨论一下这个问题。

这个重传间隔也叫做超时重传时间(Retransmission TimeOut, 简称RTO),它的计算跟上一节提到的 RTT 密切相关。这里我们将介绍两种主要的方法,一个是经典方法,一个是标准方法。

经典方法引入了一个新的概念——SRTT(Smoothed round trip time,即平滑往返时间),没产生一次新的 RTT. 就根据一定的算法对 SRTT 进行更新,具体而言,计算方式如下(SRTT 初始值为0):

SRTT = (α * SRTT) + ((1 - α) * RTT)

其中,α 是平滑因子,建议值是0.8,范围是0.8 ~ 0.9。

拿到 SRTT,我们就可以计算 RTO 的值了:

RTO = min(ubound, max(lbound, β * SRTT))

β 是加权因子,一般为1.3 ~ 2.0, lbound 是下界,ubound 是上界。

其实这个算法过程还是很简单的,但是也存在一定的局限,就是在 RTT 稳定的地方表现还可以,而在 RTT 变化较大的地方就不行了,因为平滑因子 α 的范围是0.8 ~ 0.9, RTT 对于 RTO 的影响太小。

为了解决经典方法对于 RTT 变化不敏感的问题,后面又引出了标准方法,也叫Jacobson / Karels 算法。

一共有三步。

第一步: 计算SRTT,公式如下:

SRTT = (1 - α) * SRTT + α * RTT

注意这个时候的 α跟经典方法中的α取值不一样了,建议值是1/8,也就是0.125。

第二步: 计算RTTVAR(round-trip time variation)这个中间变量。

RTTVAR = (1 - β) * RTTVAR + β * (|RTT - SRTT|)

β 建议值为 0.25。这个值是这个算法中出彩的地方,也就是说,它记录了最新的 RTT 与当前 SRTT 之间的差值,给我们在后续感知到 RTT 的变化提供了抓手。

第三步: 计算最终的RTO:

RTO = µ * SRTT + ∂ * RTTVAR

µ建议值取1, ∂建议值取4。

这个公式在 SRTT 的基础上加上了最新 RTT 与它的偏移,从而很好的感知了 RTT 的变化,这种算法下,RTO 与 RTT 变化的差值关系更加密切。

对于发送端和接收端而言,TCP 需要把发送的数据放到发送缓存区, 将接收的数据放到接收缓存区

而流量控制索要做的事情,就是在通过接收缓存区的大小,控制发送端的发送。如果对方的接收缓存区满了,就不能再继续发送了。

要具体理解流量控制,首先需要了解滑动窗口的概念。

TCP 滑动窗口分为两种: 发送窗口接收窗口

发送端的滑动窗口结构如下:

其中包含四大部分:

其中有一些重要的概念,我标注在图中:

发送窗口就是图中被框住的范围。SND 即send, WND 即window, UNA 即unacknowledged, 表示未被确认,NXT 即next, 表示下一个发送的位置。

接收端的窗口结构如下:

REV 即 receive,NXT 表示下一个接收的位置,WND 表示接收窗口大小。

这里我们不用太复杂的例子,以一个最简单的来回来模拟一下流量控制的过程,方便大家理解。

首先双方三次握手,初始化各自的窗口大小,均为 200 个字节。

假如当前发送端给接收端发送 100 个字节,那么此时对于发送端而言,SND.NXT 当然要右移 100 个字节,也就是说当前的可用窗口减少了 100 个字节,这很好理解。

现在这 100 个到达了接收端,被放到接收端的缓冲队列中。不过此时由于大量负载的原因,接收端处理不了这么多字节,只能处理 40 个字节,剩下的 60 个字节被留在了缓冲队列中。

注意了,此时接收端的情况是处理能力不够用啦,你发送端给我少发点,所以此时接收端的接收窗口应该缩小,具体来说,缩小 60 个字节,由 200 个字节变成了 140 字节,因为缓冲队列还有 60 个字节没被应用拿走。

因此,接收端会在 ACK 的报文首部带上缩小后的滑动窗口 140 字节,发送端对应地调整发送窗口的大小为 140 个字节。

此时对于发送端而言,已经发送且确认的部分增加 40 字节,也就是 SND.UNA 右移 40 个字节,同时发送窗口缩小为 140 个字节。

这也就是流量控制的过程。尽管回合再多,整个控制的过程和原理是一样的。

上一节所说的流量控制发生在发送端跟接收端之间,并没有考虑到整个网络环境的影响,如果说当前网络特别差,特别容易丢包,那么发送端就应该注意一些了。而这,也正是拥塞控制需要处理的问题。

对于拥塞控制来说,TCP 每条连接都需要维护两个核心状态:

涉及到的算法有这几个:

接下来,我们就来一一拆解这些状态和算法。首先,从拥塞窗口说起。

拥塞窗口(Congestion Window,cwnd)是指目前自己还能传输的数据量大小。

那么之前介绍了接收窗口的概念,两者有什么区别呢?

限制谁呢?

限制的是发送窗口的大小。

有了这两个窗口,如何来计算发送窗口?

发送窗口大小 = min(rwnd, cwnd)

取两者的较小值。而拥塞控制,就是来控制cwnd的变化。

刚开始进入传输数据的时候,你是不知道现在的网路到底是稳定还是拥堵的,如果做的太激进,发包太急,那么疯狂丢包,造成雪崩式的网络灾难。

因此,拥塞控制首先就是要采用一种保守的算法来慢慢地适应整个网路,这种算法叫慢启动。运作过程如下:

难道就这么无止境地翻倍下去?当然不可能。它的阈值叫做慢启动阈值,当 cwnd 到达这个阈值之后,好比踩了下刹车,别涨了那么快了,老铁,先 hold 住!

在到达阈值后,如何来控制 cwnd 的大小呢?

这就是拥塞避免做的事情了。

原来每收到一个 ACK,cwnd 加1,现在到达阈值了,cwnd 只能加这么一点: 1 / cwnd。那你仔细算算,一轮 RTT 下来,收到 cwnd 个 ACK, 那最后拥塞窗口的大小 cwnd 总共才增加 1。

也就是说,以前一个 RTT 下来,cwnd翻倍,现在cwnd只是增加 1 而已。

当然,慢启动拥塞避免是一起作用的,是一体的。

在 TCP 传输的过程中,如果发生了丢包,即接收端发现数据段不是按序到达的时候,接收端的处理是重复发送之前的 ACK。

比如第 5 个包丢了,即使第 6、7 个包到达的接收端,接收端也一律返回第 4 个包的 ACK。当发送端收到 3 个重复的 ACK 时,意识到丢包了,于是马上进行重传,不用等到一个 RTO 的时间到了才重传。

这就是快速重传,它解决的是是否需要重传的问题。

那你可能会问了,既然要重传,那么只重传第 5 个包还是第5、6、7 个包都重传呢?

当然第 6、7 个都已经到达了,TCP 的设计者也不傻,已经传过去干嘛还要传?干脆记录一下哪些包到了,哪些没到,针对性地重传。

在收到发送端的报文后,接收端回复一个 ACK 报文,那么在这个报文首部的可选项中,就可以加上SACK这个属性,通过left edge和right edge告知发送端已经收到了哪些区间的数据报。因此,即使第 5 个包丢包了,当收到第 6、7 个包之后,接收端依然会告诉发送端,这两个包到了。剩下第 5 个包没到,就重传这个包。这个过程也叫做选择性重传(SACK,Selective Acknowledgment),它解决的是如何重传的问题。

当然,发送端收到三次重复 ACK 之后,发现丢包,觉得现在的网络已经有些拥塞了,自己会进入快速恢复阶段。

在这个阶段,发送端如下改变:

以上就是 TCP 拥塞控制的经典算法: 慢启动拥塞避免快速重传和快速恢复

试想一个场景,发送端不停地给接收端发很小的包,一次只发 1 个字节,那么发 1 千个字节需要发 1000 次。这种频繁的发送是存在问题的,不光是传输的时延消耗,发送和确认本身也是需要耗时的,频繁的发送接收带来了巨大的时延。

而避免小包的频繁发送,这就是 Nagle 算法要做的事情。

具体来说,Nagle 算法的规则如下:

试想这样一个场景,当我收到了发送端的一个包,然后在极短的时间内又接收到了第二个包,那我是一个个地回复,还是稍微等一下,把两个包的 ACK 合并后一起回复呢?

延迟确认(delayed ack)所做的事情,就是后者,稍稍延迟,然后合并 ACK,最后才回复给发送端。TCP 要求这个延迟的时延必须小于500ms,一般操作系统实现都不会超过200ms。

不过需要主要的是,有一些场景是不能延迟确认的,收到了就要马上回复:

前者意味着延迟发,后者意味着延迟接收,会造成更大的延迟,产生性能问题。

大家都听说过 http 的keep-alive, 不过 TCP 层面也是有keep-alive机制,而且跟应用层不太一样。

试想一个场景,当有一方因为网络故障或者宕机导致连接失效,由于 TCP 并不是一个轮询的协议,在下一个数据包到达之前,对端对连接失效的情况是一无所知的。

这个时候就出现了 keep-alive, 它的作用就是探测对端的连接有没有失效。

在 Linux 下,可以这样查看相关的配置:

sudo sysctl -a | grep keepalive// 每隔 7200 s 检测一次net.ipv4.tcp_keepalive_time = 7200// 一次最多重传 9 个包net.ipv4.tcp_keepalive_probes = 9// 每个包的间隔重传间隔 75 snet.ipv4.tcp_keepalive_intvl = 75

不过,现状是大部分的应用并没有默认开启 TCP 的keep-alive选项,为什么?

站在应用的角度:

因此是一个比较尴尬的设计。

关注公众号↑↑↑:IT运维大本营,获取60个G的《网工大礼包》