以下是6个点云
精简的
实现代码,分别使用了不同的算法和库:
1. 使用PCL库进行体素下采样
```cpp
#include <pcl/common/common.h>
#include <pcl/filters/voxel_grid.h>
pcl::PointCloud<pcl::PointXYZ>::Ptr downsample(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, float voxel_size)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr downsampled_cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::VoxelGrid<pcl::PointXYZ> voxel_grid;
voxel_grid.setInputCloud(cloud);
voxel_grid.setLeafSize(voxel_size, voxel_size, voxel_size);
voxel_grid.filter(*downsampled_cloud);
return downsampled_cloud;
}
```
2. 使用Open3D库进行体素下采样
```python
im
port open3d as o3d
def downsample(cloud, voxel_size):
downsampled_cloud = cloud.voxel_down_sample(voxel_size)
return downsampled_cloud
```
3. 使用PyVista库进行体素下采样
```python
im
port pyvista as pv
def downsample(cloud, voxel_size):
downsampled_cloud = cloud.voxel_down_sample(voxel_size)
return downsampled_cloud
```
4. 使用VTK库进行体素下采样
```cpp
#include <vtkSmartPointer.h>
#include <vtkPoints.h>
#include <vtkPolyData.h>
#include <vtkPointSet.h>
#include <vtkPointSource.h>
#include <vtkXMLPolyDataWriter.h>
#include <vtkXMLPolyDataReader.h>
#include <vtkPLYReader.h>
#include <vtkPLYWriter.h>
#include <vtkPCDReader.h>
#include <vtkPCDWriter.h>
#include <vtkVoxel.h>
#include <vtkVoxelModeller.h>
vtkSmartPointer<vtkPolyData> downsample(vtkSmartPointer<vtkPolyData> cloud, double voxel_size)
{
vtkSmartPointer<vtkVoxelModeller> voxel_modeller = vtkSmartPointer<vtkVoxelModeller>::New();
voxel_modeller->SetInputData(cloud);
voxel_modeller->SetSampleDimensions(voxel_size, voxel_size, voxel_size);
voxel_modeller->Update();
vtkSmartPointer<vtkPolyData> downsampled_cloud = vtkSmartPointer<vtkPolyData>::New();
downsampled_cloud->ShallowCopy(voxel_modeller->GetOutput());
return downsampled_cloud;
}
```
5. 使用CGAL库进行点云网格化
```cpp
#include <CGAL/Point_set_3.h>
#include <CGAL/Point_set_3/IO.h>
#include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
typedef CGAL::Point_set_3<CGAL::Simple_cartesian<double>> Point_set_3;
void downsample(Point_set_3& cloud, double voxel_size)
{
CGAL::Polygon_mesh_processing::polygon_soup_to_polygon_mesh(cloud.points().begin(), cloud.points().end(), cloud.facets().begin(), cloud.facets().end(), voxel_size);
}
```
6. 使用MeshLab进行点云简化
```python
im
port pymeshlab as ml
def simplify(cloud, target_faces):
ms = ml.MeshSet()
ms.load_new_mesh(cloud)
ms.simplification_quadric_edge_collapse_decimation(targetfacenum=target_faces)
simplified_cloud = ms.current_mesh()
return simplified_cloud