商务服务
SPSS判断数据正态分布的方法有哪些?
2024-11-10 05:09

当我们应用统计方法对数据进行分析时,会发现许多计量资料的分析方法,例如常用的T检验、方差分析、相关分析以及线性回归等等,都要求数据服从正态分布或者近似正态分布,但这一前提条件往往被使用者所忽略。因此为了保证数据满足上述统计方法的应用条件,对原始数据进行正态性检验是十分必要的,这一节内容我们主要向大家介绍如何对数据资料进行正态性检验。

SPSS判断数据正态分布的方法有哪些?

一、正态性检验:偏度和峰度

1、偏度(Skewness):描述数据分布不对称的方向及其程度(见图1)。

当偏度≈0时,可认为分布是对称的,服从正态分布;

当偏度>0时,分布为右偏,即拖尾在右边,峰尖在左边,也称为正偏态;

当偏度<0时,分布为左偏,即拖尾在左边,峰尖在右边,也称为负偏态;

注意:数据分布的左偏或右偏,指的是数值拖尾的方向,而不是峰的位置,容易引起误解。

2、峰度(Kurtosis):描述数据分布形态的陡缓程度(图2)。

当峰度≈0时,可认为分布的峰态合适,服从正态分布(不胖不瘦);

当峰度>0时,分布的峰态陡峭(高尖);

当峰度<0时,分布的峰态平缓(矮胖);

利用偏度和峰度进行正态性检验时,可以同时计算其相应的Z评分(Z-score),即:偏度Z-score=偏度值/标准误,峰度Z-score=峰度值/标准误。在α=0.05的检验水平下,若Z-score在±1.96之间,则可认为资料服从正态分布。

了解偏度和峰度这两个统计量的含义很重要,在对数据进行正态转换时,需要将其作为参考,选择合适的转换方法。

3、SPSS操作方法

以分析某人群BMI的分布特征为例。

(1) 方法一

选择Analyze → Descriptive Statistics → Frequencies

将BMI选入Variable(s)框中 → 点击Statistics → 在Distribution框中勾选Skewness和Kurtosis

(2) 方法二

选择Analyze → Descriptive Statistics → Descriptives

将BMI选入Variable(s)框中 → 点击Options → 在Distribution框中勾选Skewness和Kurtosis 

4、结果解读

在结果输出的Descriptives部分,对变量BMI进行了基本的统计描述,同时给出了其分布的偏度值0.194(标准误0.181),Z-score = 0.194/0.181 = 1.072,峰度值0.373(标准误0.360),Z-score = 0.373/0.360 = 1.036。偏度值和峰度值均≈0,Z-score均在±1.96之间,可认为资料服从正态分布。

二、正态性检验:图形判断

1、直方图:表示连续性变量的频数分布,可以用来考察分布是否服从正态分布

(1)选择Graphs → Legacy Diaiogs → Histogram

(2)将BMI选入Variable中,勾选Display normal curve绘制正态曲线

2、P-P图和Q-Q图

(1) P-P图反映了变量的实际累积概率与理论累积概率的符合程度,Q-Q图反映了变量的实际分布与理论分布的符合程度,两者意义相似,都可以用来考察数据资料是否服从某种分布类型。若数据服从正态分布,则数据点应与理论直线(即对角线)基本重合。

(2) SPSS操作:以P-P图为例

选择Analyze → Descriptive Statistics → P-P Plots

将BMI选入Variables中,Test Distribution选择Normal,其他选项默认即可。

三、正态性检验:非参数检验分析法

1、正态性检验属于非参数检验,原假设为“样本来自的总体与正态分布无显著性差异,即符合正态分布”,也就是说P>0.05才能说明资料符合正态分布。

通常正态分布的检验方法有两种,一种是Shapiro-Wilk检验,适用于小样本资料(SPSS规定样本量≤5000),另一种是Kolmogorov–Smirnov检验,适用于大样本资料(SPSS规定样本量>5000)。

2、SPSS操作

(1) 方法一:Kolmogorov–Smirnov检验方法可以通过非参数检验的途径实现

选择Analyze → Nonparametric Tests → Legacy Dialogs → 1-Sample K-S

将BMI选入Test Variable List中,在Test Distribution框中勾选Normal,点击OK完成操作。

(2) 方法二:Explore方法

选择Analyze → Descriptive Statistics → Explore

将BMI选入Dependent List中,点击Plots,勾选Normality plots with tests,在Descriptive框中勾选Histogram,Boxplots选择None,点击OK完成操作。

3、结果解读

(1)在结果输出的Descriptives部分,对变量BMI进行了基本的统计描述,同时给出了其分布的偏度值、峰度值及其标准误,具体意义参照上面介绍的内容。

(2)在结果输出的Tests of Normality部分,给出了Shapiro-Wilk检验及Kolmogorov-Smirnov检验的结果,P值分别为0.200和0.616,在α=0.05的检验水准下,P>0.05,不拒绝原假设,可认为资料服从正态分布。

(3)在结果输出的最后部分,同时给出了直方图和Q-Q图,具体意义参照上面介绍的内容。建议可以直接使用Explore方法,结果中不仅可以输出偏度值,峰度值,绘制直方图,Q-Q图,还可以输出非参数检验的结果,一举多得。

四、注意事项

事实上,Shapiro-Wilk检验及Kolmogorov-Smirnov检验从实用性的角度,远不如图形工具进行直观判断好用。在使用这两种检验方法的时候要注意,当样本量较少的时候,检验结果不够敏感,即使数据分布有一定的偏离也不一定能检验出来;而当样本量较大的时候,检验结果又会太过敏感,只要数据稍微有一点偏离,P值就会<0.05,检验结果倾向于拒绝原假设,认为数据不服从正态分布。所以,如果样本量足够多,即使检验结果P<0.05,数据来自的总体也可能是服从正态分布的。

因此,在实际的应用中,往往会出现这样的情况,明明直方图显示分布很对称,但正态性检验的结果P值却<0.05,拒绝原假设认为不服从正态分布。此时建议大家不要太刻意追求正态性检验的P值,一定要参考直方图、P-P图等图形工具来帮助判断。很多统计学方法,如T检验、方差分析等,与其说要求数据严格服从正态分布,不如说“数据分布不要过于偏态”更为合适。

有专家根据经验提出,标准差超过均值的1/2时提示数据不服从正态分布,或者四分位间距与标准差的比值在1.35左右时提示服从正态分布,这些可以作为正态性检验的一个粗略判断依据,仅供参考,欢迎访问SPSS中文网站查看更多SPSS教程。

    以上就是本篇文章【SPSS判断数据正态分布的方法有哪些?】的全部内容了,欢迎阅览 ! 文章地址:http://zleialh.tongchengxian.cn/news/405.html 
     资讯      企业新闻      行情      企业黄页      同类资讯      首页      网站地图      返回首页 通成线资讯移动站 http://zleialh.tongchengxian.cn/mobile/ , 查看更多   
最新新闻
【AI系统的出现】数据、算法与计算力的完美交响
在数字化时代的洪流中,人工智能(AI)如同破茧的凤凰,展翅高飞。这篇文章深入剖析了AI系统崛起的三大支柱:海量数据的积累、计
做小说推文发布哪个平台好?小说推文视频什么类型比较好做
小说推广是不挑平台的,抖音,小红书,快手,视频号都可以,这是个真正可以做到一鱼多吃的项目。brbr抖音是转化率最好的平台,快
《抖音短视频》活跃状态查看方法
最近很多小伙伴发现自己的抖音中多了一个“活跃状态”的标识,那么这个活跃状态是什么意思?在哪里可以看到呢?下面小编为大家带
复旦中文文本分类语料库:助力中文NLP研究的利器
复旦中文文本分类语料库是由复旦大学计算机科学与技术系的李荣陆老师精心打造的一项宝贵资源。该语料库旨在为中文自然语言处理&#
为什么你的设计总是同质化?
解决设计问题,是我们每个设计师必须要具备的能力,但是又不能为了不一样而不一样,所以以自身品牌出发来做差异化,才是正确的方
“不买年”成新年关键词:不是不买,而是高质量“买买买”
2022年第一天,在北京工作的王芳语在朋友圈留下这样一句签名——“2022年,挑战‘不买年’”。新年伊始,很多年轻人纷纷在社交平
怎么查询百度搜索关键词的用户数量呢【怎么查百度关键词检索量】
在当今数字化的时代,了解市场行情和用户需求对于企业和个人都至关重要,查询百度搜索关键词的用户数量是一种常用的方法,它可以
今日沪深300股指期货行情价格分析[有帮助]
注:点此进入主页查看全部最新行情分析。10月15日沪深300股指期货策略:中性。短期财政刺激预期落空,股指转入震荡回落,建议观
本企业新闻